

In order to sketch the graph of a surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called **traces** (or cross-sections) of the surface.

CYLINDERS

A **cylinder** is a surface that consists of all lines (called **rulings**) that are parallel to a given line and pass through a given plane curve.

V EXAMPLE 1 Sketch the graph of the surface $z = x^2$.

SOLUTION Notice that the equation of the graph, $z = x^2$, doesn't involve y. This means that any vertical plane with equation y = k (parallel to the xz-plane) intersects the graph in a curve with equation $z = x^2$. So these vertical traces are parabolas. Figure 1 shows how the graph is formed by taking the parabola $z = x^2$ in the xz-plane and moving it in the direction of the y-axis. The graph is a surface, called a

Parabolic cylinder

EXAMPLE 2 Identify and sketch the surfaces.

(a)
$$x^2 + y^2 = 1$$

(b)
$$y^2 + z^2 = 1$$

FIGURE 2 $x^2 + y^2 = 1$

FIGURE 3 $v^2 + z^2 = 1$

NOTE When you are dealing with surfaces, it is important to recognize that an equation like $x^2 + y^2 = 1$ represents a cylinder and not a circle. The trace of the cylinder $x^2 + y^2 = 1$ in the xy-plane is the circle with equations $x^2 + y^2 = 1$, z = 0.

QUADRIC SURFACES

A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

where A, B, C, \ldots, J are constants, but by translation and rotation it can be brought into one of the two standard forms

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 or $Ax^2 + By^2 + Iz = 0$

FIGURE 4

The ellipsoid
$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

Algebraic representation of the surfaces

Quadric surfaces

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{13}yz + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0$$

Quadric – algebraic surfaces of 2nd degree

Hyperboloid of one sheet $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$,	$x = a \cosh u \cos t$ $y = b \cosh u \sin t$ $z = c \sinh u$
Hyperboloid of two sheets $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$		$x = a \cosh u$ $y = b \cos t \sinh u$ $z = c \sin t \sinh u$
Eliptic Paraboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$	y o y	$x = at$ $y = bu$ $z = t^2 + u^2$

Hyperbolic paraboloid		
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	l l	$x = at$ $y = bu$ $z = t^2 - u^2$
Cone $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$	z o =v y	$x = at \cos u$ $y = bt \sin u$ $z = t$
Cylinder $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		$x = a \cos u$ $y = b \sin u$ $z = t$

Intersection curve of a plane and a quadric contour line

Hyperbolic paraboloid

$$z = x^{2} - y^{2}$$
Cut by plane $z = z_{0}$; $z_{0} = x^{2} - y^{2}$

$$C(t) = \left(\sqrt{z_{0}} \cdot \cosh t, \sqrt{z_{0}} \cdot \sinh t, z_{0}\right); z \neq z_{0}$$

Circular paraboloid

$$z = x^2 + y^2$$
Cut by plane $z = z_0$; $z_0 = x^2 + y^2$

$$C(t) = \left(\sqrt{z_0} \cdot \cos t, \sqrt{z_0} \cdot \sin t, z0\right)$$

Gradient ∇f of the scalar field f(x,y)

- The gradient points in the direction of the greatest rate of increase of the function, and its magnitude is the slope of the graph in that direction.
- A level curve (or contour line), is the set of all points where some function has a given value.

$$\nabla f(x, y) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

05_gradient.ggb

← GeaGebra < 5.8. >

KGradient hyperbolického paraboloidu

 $r^2 - v^2$

- The gradient points in the direction of the greatest rate of increase of the function, and its magnitude is the slope of the graph in that direction.
- A level curve (or contour line), is the set of all points where some function has a given value.

Gradient ∇f of the function f(x,y)

Hyperbolic paraboloid

$$z=x^2-y^2$$

Tangent plane at the point

$$X(0,0) = [0,0,0]$$

$$\tau: z = 0$$

03_hyp_paraboloid_funkce_tecna.ggb

Hyperbolic, elliptic and parabolic points on the surface

Point T is calling:

Elliptic point
T is isolated (or the only) point of the cutting curve

 Hyperbolic point T is nodal point

Parabolic point

Loci of hyperbolic and elliptic points are separated by curve of parabolic points

Tangent plane of the hyperbolic paraboloid

Tečná rovina hyperbolického paraboloidu

Tečná rovina grafu funkce z = f(x,y) v bodě T = [x0,y0,f(x0,y0)] je dána předpisem.

 $z = f(x0, y0) + f'_{x}(x0, y0)(x - x0) + f'_{y}(x0, y0)(y - y0).$

03_hyp_paraboloid_funkce_tecna.ggb

Lemniscate as a toric section

Torus is a surface of revolution generated by revolving a circle in three-dimensional space about an axis coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution.

Intersection curves

Intersection of two surfaces

Hyperboloid of one sheet and cylinder

$$x^2 + y^2 - z^2 = 1$$

 $x^2 + z^2 = 1$

Parametric equation of the intersection curves

$$X(t) = \left[\cos(t), \pm\sqrt{2}\sin t, \sin t\right]$$

Parameterizing sphere with longitude and latitude

$|OM_1| = d$

$$x = d \cdot \cos \varphi$$
 $d = r \cdot \cos \psi$

$$y = d \cdot \sin \varphi$$
 $z = r \cdot \sin \psi$

 $x = r \cdot \cos \psi \cdot \cos \varphi$

 $y = r \cdot \cos \psi \cdot \sin \varphi$

 $z = r \cdot \sin \psi;$

 $\varphi \in \langle 0, 2\pi \rangle; \quad \psi \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$

Parametric surface

Surface is two parameters set of points P(u,v), whose coordinates could be expressed by continuous transformation $\Omega \rightarrow E^3$, $[u, v] \rightarrow [x, y, z]$

Circular Cylinder

Implicit equation:

$$x^2 + y^2 = r^2$$

Parametric form:

 $\begin{aligned}
 x &= r \cos u \\
 y &= r \sin u
 \end{aligned}$

z=v , $u\in <0, 2\pi>, v\in <0, h>$

Curve on the surface:

u = t, v = t, $t \in <0$, $4\pi >$

 $x = r \cos t$

 $y = r \sin t$

z=t, $t \in <0$, $2\pi >$

