Linear and affine transformations

* Linear Algebra Review
= Matrices
= Transformations
+ Affine transformations in Euclidean space

Tricky examples of nonlinear
7transtormations (Youtube}

Geometric transformations

* Geometric transformations map points in one space to points in
another: (x',y',z") = f(x,y,2), i.e. in vector form X’ = f(X)

* These transformations can be very simple, such as scaling each
coordinate, or complex, such as non-linear twists and bends.

* We'll focus on transformations that can be represented easily with
matrix operations.

* We'll startin 2D...
Reflect Object in Line

+° Reflect Object in Point

\ @@@ Circle

:9. Rotate around Point

-/}' Translate by Vector

.ck-"' Enlarge from Point



https://youtu.be/MgWkNwczVb0

2D Affine Transformations

 An affine transformation is any transformation
that preserves co-linearity (i.e., all points lying on
a line initially still lie on a line after
transformation) and ratios of distances (e.g., the
midpoint of a line segment remains the midpoint
after transformation).
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Turn!

Rotation ‘

Reflection Flip!

Translation Slide!

ISOMETRY (CONGRUENCE)
PRESERVES LENGTHS

After any of those transformations (turn, flip or slide),
the shape still has the same size, area, angles and line lengths.



https://www.mathsisfun.com/geometry/transformations.html

SIMILARITY (RESIZING)

PRESERVES ANGLES

When you resize a shape it gets
bigger or smaller. il
... but it still looks similar:
all angles are the same

AFFINITY
PRESERVES PARALLEL LINE

Affine transformation preserves parallelism,
dividing proportion, linearity and incidence.

Similarity and congruence can be viewed as a
special case of the affine transformation.

AND DIVIDING PROPORTION




HOMOGRAPHY (PROJECTIVE)

The projective transformation does not )
preserve parallelism, length, and T x
angle. But it still preserves collinearity

and incidence.
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Similarity Transformation
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Matrix Multiplication

if Alis an n x m matrix and B is an m * p matrix,
their matrix product AB is an n x p matrix, in
which the m entries across a row of A are —

vy

multiplied with the m entries down a column of B

and summed to produce an entry of AB.
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https://en.wikipedia.org/wiki/Matrix_multiplication

Matrix Multiplication is not
commutative

AB = BA

When we change the order of multiplication, the answer is (usually) different.

Example:

See how changing the order affects this multiplication:

[ 3172 = 2]
[ l3 i =[5l

The answers are different!

Expand vector notation for linear
equations

2 AR ) Solgtlon
p , X' = AX
L (X)L, (X
X = y)n<=(yj (w) (2 1)(
\ =
! 0 -1
A (21 Y/ o
—\0 1 X'=2x+1y

y'=0x-y

X
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https://en.wikipedia.org/wiki/Matrix_multiplication

= The linear transformation given by a matrix

Let A be an 2 x 2 matrix. The function T defined by

T(v)=Av
is a linear transformation from R2into R2.

« Note: . N
X'= AX
X' a b\(x
y') Le d)ly
X" =ax+ by
y'=cx+dy

= The linear transformation given by a matrix

Let A be an mxn matrix. The function T defined by
T(v)=Av
is a linear transformation from R"into R™.

n m
. Note: R V?CtOI’ R \fector
a; 3, - || Vv, +a,Vv, +-+ )V,
A Ay Ay vt Ay |V, AyVy+a,V, +---+3,V,
v=| . . . .= .
A Ay o @ ||V An Vo +a,V +e+a, v
T(v)=Av

T:R"——R"




« Two representations of the linear transformation
T:R3—>R3:

AT (%, Xy, X3) = (2X, + X, — Xg,—X; +3X, —2X5,3X, +4X;)

2 1 -1|x
@ATX)=Ax=|-1 3 -2|x,
0 3 4 |x

= Three reasons for matrix representation of a linear
transformation:

« It is simpler to write.
« Itis simpler to read.

- It is more easily adapted for computer use.

Representation of 2D linear map

We can represent a 2-D transformation M by a matrix

we )

If X is a column vector, M goes on the left: X' = Mx
X'| |a b||x
y| ¢ dfly

If x is a row vector, MT goes on the right: X' =xM"

We will use column vectors.




Property of Linear Transforms

Basis vectors map to columns of matrix.

» Origin (0,0) is always fixed point.

» Composition of M and M1 gives identity.
Determinant det(M) is scaling factor of the linear transformation
described by the matrix M.

e GREE
e A I

Scaling by 0.5 x'=Mex

1]

(1, 0) (0.5, 0)

—
A
0,1)
(0, 0.5)
|
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Scaling by 0.5 X' = Mex

1
y o de) =
{0'5 0} det(M) =4
0 05
B {2 o} {
M =
0 2 X
——

Inverse mapping = scaling by 2

Composition of M and M1 gives identity. Determinant is scaling factor of the
linear transformation described by the matrix.

Homothety - Scaling

Describe the transformation represented by matrix S = {{2, 0}, {0, 2}}.
Find all fixed points and directions.
List all invariants.

el

10


Z_Scaling_easy.ggb
https://en.wikipedia.org/wiki/Homothetic_transformation

Homothety - Scaling

Describe the transformation represented by matrix
S =1{{2,0}1.{0,2}}.

Find all fixed points and directions. List all invariants.

2 0
S:
o2
. T TRV =2X
Fixed points: X '= X; X '=SX X }x:O,y=0
X =$-X y=2y

Only one fixed point (0, 0).

Fixed directions: v'=Av;v'=Sv  Ax=2x X(A-2)=0

Av=S-v /1y=2y}:>y(/1—2)=0
=>1=2,xeR,yeR
All directions are fixed.

General Scaling

X' = scale(s,,s, )*X

1 nn scale(s,,s, ) = ;
8 s, O gc
{0 sj 3‘
. x -

11


https://en.wikipedia.org/wiki/Homothetic_transformation

General Scaling

Describe the transformation represented t;y matrix S = {{2, 0}, {0, 1}}

Find all fixed points and directions.

List all invariants.

)

ar

Il
AN
=
O ot

General Scaling

Describe the transformation represented by matrix

S = {{2,0},{0,1}}.

Find all fixed points and directions. List all invariants.

20
S =

o 2)
Fixed points: X '= X; X '=SX
X=S-X

Fixed directions: v'= Av;v'=Sv
AvV=S-v

X =2X
}x=0,yeR
y=y

FP={(0,t),t e R}.

/1x=2x} X(A-2)=0

=

Ay=y y(41-1)=0
=>1=2,xeR,y=0; fd =(t,0)
=>1=1x=0,yeR; fd =(0,t)

2 fixed directions: [(1,0)] and [(0,1)].

12


Z_Scaling_ellipse.ggb
https://www.geogebra.org/m/adNf29qr#material/gHctxyNC
https://www.geogebra.org/m/adNf29qr#material/gHctxyNC

Scaling of a circle

—X 2 2
X' =Mex X=— xX+y=l
\2 N\ 2
X M_l ' yzl i +(Lj =1
b a b
y
M = a 0 y
0 b
—
\ — b
Lol I
-1
1 * ME= 1 a X
0 =
b
Real image

? Driver’s eye

—
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g | |
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Shear-x X' = Mex

y y
T
nn 1 s aﬂ
a 0 1 oy
O @
Rotation X" =R(t)ex
_|cos(t) —sin(t)
rot(t) _Lin(t) cos(t) }
- t |sin(t)
i cos(t)
—p
A -sin(t)
t cos(t)

November 10, 2020 28




Trajectory of point A =(r, 0)
in revolution

X' = ReX

_|cos(g) —sin(g) | ot(R) -
R_Lin(qﬁ) cos () } det(R) =1

y
x| [cos(¢) —sin(g)|lr
y'| |sin(g) cos(¢) |0
X'=r-cos¢ Y
y'=r-sing ¢\
GeoGebra book A X
Exercise: Rotation X" = R(g)+X
Estimate parameter a so that matrix B represents revolution
about origin.
Find all fixed points and directions.
a V2 _
2 cos —sin
|2 I:a(gb):{sin “ Ccos (¢)}
5 @ (¢) cos(¢)

1. method: comparing elements R and B.

7z 2

Sing=—=a=Cc0S¢=—
2. method: 2 2

det(B)=1:>a2+%=1

Matrix Representation of rotation

15


https://www.geogebra.org/m/adNf29qr#material/BrAvB74d
Z_04_Rotation.ggb
https://www.geogebra.org/m/qrpxjuzq

V2 2
Rotation B 2 2

Find all fixed points. £ £
2 2
X'=B-x, X'=x

Xx=B:-x=(B-E)x=0

GeoGebra tool ReducedRowEchelonForm (M) eliminates
non diagonal elements by row operations (= Gaussian

elimination). 10
(B-E)~

Using back-substitution, unknowns X, y can be solved for.
Solution x = 0 and y = 0 gives only one fixed point FP = (0,0).

| 2z

Rotation B=| 2 2
2 2

Find all fixed directions. % %

X' =B-X, X'=AX
AX=B-x=(B-AE)x=0

Matrix (B—-AE) must be singular for non trivial solutions x, but
Det (B-AE)=0 has no real solution.

v2_, 2
2 2
B—JE|= =0
B 2E| b oG
2 2

General rotation hasn’t fixed directions.

16



Reflection in y-axis

November 10, 2020

refy =

X' = refy-x

33

Reflection in y-axis

|

refy =

-1 0
0 1

November 10, 2020

X' = refy-x

34
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Line reflection

o ¥
Write the matrix of a line reflection with respect to the line OA.

B ~ ~
A
e2 lel’ J
el )

-2 -1 02 3 4

-1
0 1
M =
(15)

Reflection in the line y= x

Reflection in the line y = =
boils down to swapping - and
y-coordinates:

(10)G) =)

Q: what is the inverse of this
matrix?

18



Composing Linear Transformations

- If T, and T, are transformations h(v)=M, v

T,(V)=M,-
" T, To) =g To TolV)) () =M.V
* If T, and T, are represented by matrices M, and M,,
= T, T, is represented by M, M,

" T T(v) = To(Ty(v) = (MyM)(v) A
o
+ Order is important! i / N
reflect(x) (rot(0,a)): A - A’ - A” E \\
0, fl A >A-A ’ |
rot(0,a) (reflect(x)) oLy ass | “A
oo 12
A'=Rot- A
A"=Ref - A’ A,
| o
Composing Linear Transformations
« Order is important!
reflect(x) (rot(0,a)): A - A’ = A”
rot(O,a) (reflect(x)): A - A—-A’ Rot * Ref

o

—
4

) , Ref = olo 1
Sina cosa 0 -1

/ >~
1 PR _’
A'=Rot- A A"= Ref - A' MR - -
[com -sina 10 S | /”C‘iﬁ Yoo
RO'[= ! 2 3

cosa  Sina 1
Rot*Ref =[ ) ]
sinae  —cosa

. -2
cosa -Sina
Ref*Rot:[ ) ]
—sing —CcoSa

19



Composition of Linear Transformations

T nQ/ r‘"‘}
Describe the composition of reflection in liney = 0

followed by reflection in line y = x. Find the reverse transformation.

/‘1
oY _
b A N T2T1:(0 1)
5 s 1 0
L \
S imvT2T1 = ( 0 1
2 7 “ -1 0 /
/ A
1 !
,j \:O
—d
01 _qnn 1
- 1 2 : gl 5 6 7
ol “~_ a Ty
» . y
\\ 7
\\ u B
. . -2 L | ®
Composition of linear transformations 39

*Decomposing Linear
Transformations

* Any 2D Linear Transformation can be decomposed into the product
of a rotation, a scale (or line reflection), and a rotation
M =R,SR,.

* Any 2D congruence can be decomposed into the product of 3 line
reflection at the most.

Isometry (congruent transformation)

* Isometry preserves length, whereas direct isometry preserves
orientation and opposite does not preserve orientation

» Direct Isometry |R| = 1 (Rotation)

» Opposite Isometry |R| = -1 (Line Reflection)



https://www.geogebra.org/m/adNf29qr#material/m3BMum5s
https://www.geogebra.org/m/adNf29qr#material/m3BMum5s

Linear Transformations

» Scale, Reflection, Rotation, and Shear are all linear
transformations

* They satisfy: T(au + bv) = aT(u) + bT(v)
= y and v are vectors
= g and b are scalars
* If Tis alinear transformation
= T((0, 0)) = (0, 0)
* What important operation does that leave out?

Linear transformation

¥ x
| 5:\
T » X 0 > X

Affine transformation

—. s J ._}

B -

- N

-

= I
s ,
LT
n
p X X X

21



Rotation about
an Arbitrary Point

This is not a linear transformation. The origin moves.

Translation

(X’ y)_>(X+a’y+b) y

(a, b)

X

This is not a linear transformation. The origin moves.

22



Homogeneous Coordinates

y
Embed the xy-plane in R3at z = 1.

X, y) <> (XY, 1)

Y

x X'=A-X
X a; a, 0| X apX+a,y
Y |=|ay ay 0 Y|=|ayX+ay,y
Z 0 0O 1|1 1

2D Linear Transformations
as 3D Matrices

Any 2D linear transformation can be
represented by a 2x2 matrix

{au aiz}m{anﬂauy}
a21 a22 y a21X + a22y

or a 3x3 matrix

a, a, 0fx & X+a,y
a, a, 0]y 8, X +85Y
0 0 1j1 1

23



2D afinne transformation

Image of a point (x,y, 1)T

X' e f, mijx ex+ fiy+m
y'|=le, f, nily|=|ex+f,y+n
1 0 0 11 1

Image of a vector (X, y, 0)7

iy

N

2D afinne transformation

Image of a origin (0, 0, 1)Tis 3" column.
f
f

Image of a basis vectors (1, 0, 0)T, (0, 1, 0)" are
1st and 3" columns.

D
s

< X
[¢)
~ > 3

e f, mil| |g e f, mllO f,
e, f, n||0|=]e, e, f, n|li=]|f,
0 0 1]j0 0 0 0 1}0 0

24



2D Linear Translations
as 3D Matrices

Any 2D translation can be represented by a 3x3 matrix.

: ¢ 1 0 al[x X +a

2 0 1 billy|=|y+Db

: , 00 11 1
5 c

With homogeneous coordinates, we can represent all 2D affine
transformations as 3D linear transformations.
We can then use matrix multiplication to transform objects.

Rotation 180° about an arbitrary point

T c

Find out the matrix representation of reflection in point S(3, 1)"

|

-1 0 6
A= 0 -1 2
0 01 /
5
g
3 3 4 5 6 7 8

Z_affine_reflectionPoint.ggb

25


Z_affine_reflectionPoint.ggb

Recall that the column vectors of the matrix M are given

by images of the basis vectors and origin O(0, 0).
o

4 ;
I 1 i3 %4

M=101 3 S‘y
001 y

o
[+]
3 ﬂ/ 4
Spear =|M|- Suh‘.m_ﬁ/ . &
4=1-4
E2
1 K
b2 2
El
el:“
0 1 2 3
-1 Affine transformation

Windowing Transforms

Windowing is the process of transforming co-ordinates from one space
to another. It is used when scaling and transforming the view of a
program. For example: when you zoom into an image, the original
image data is transformed to fill the current screen.

(A,B)

(a,b)

translate (A-a,B-b)

sczy
(C.D)

(C-c,D-d)

#
translate (¢ g)
| 53

26


https://www.geogebra.org/m/adNf29qr#material/W4TdtBy9

Fixed point of the plane isometry

Classify the transformation A. Determine all fixed points and directions.

0 -1 6 V=V K—(O —1J
A=[1 0 1 AV = AV 1 0
0 0 1 (ﬂ—iE)\?zG

Determinant A = 1, first two orthonormal columns yields the
congruent transformation. Vectors could be investigated by
linear part 4 of matrix A. Translation has no influence on

vectors.
|A-AE|=4*+1=0

Characteristic polynomial has only complex solution.
Isometry without fixed direction is rotation.

Fixed point of the plane isometry

Classify the transformation A. Determine all fixed points.

0 -1 6 X=X
A=[1 0 1 X = AX
00 1 (A-E)X =6

o Ko

-1 -1 6) (-1 -1 6) (1 0 -25
(A-E)=| 1 -1 1|~| 0 -2 7|~|0 1 -35

0 0 O 0 00/ l00 O
GeoGebra tool ReducedRowEchelonForm (M) provides
Gaussian elimination with echelon form *. Using back-

substitution, unknowns x, y can be solved for.
Transformation has only one fixed point FP = ( 2.5, 3.5).

27


https://en.wikipedia.org/wiki/Characteristic_polynomial
https://www.geogebra.org/m/dpmnrr3a

Fixed point of the plane isometry

Classify the transformation A. Determine all fixed points.

,,,,,,,,,,,,,,,,,,,, S
(10 -25)(x) (0
1o 1 -35[|y|=|o0
00 o /(1) o
x-25=0
y—-3.5=0

GeoGebra tool ReducedRowEchelonForm (M) provides

Gaussian elimination with echelon form *. Using back-
substitution, unknowns x, y can be solved for.
Transformation has only one fixed point FP = ( 2.5, 3.5).

3D Transformations

Remember: y X
y|< Y
z
z
1
A 3D linear transformation can be represented by a
3x3 matrix. _ _
a, a, a; 0
&; &, dj 0
aZl a22 a22
a'21 a‘22 a'23 NN O
a'31 a'32 a'33
a31 a32 a33
0 0 0 1
November 10, 2020 57
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3D Affine Transformations

s, 0 0 0

0 s, 0O

scale(s,,s,,s,) = 0 Oy .
SZ

0 0 0 1

1 0 O tx 1

010t
translatE(tx,ty1tz): 0 0 1 ty

000 1

3D Rotations

1 0 0 0 S
0 cos(@) —sin(6) 0
tt =
rotate, (6) =| | sin(@) cos(8) 0
0 0 0 1
cos(6) 0 sin(g) 0
rotate, (0) =|
~sin(#) 0 cos(#) O
cos(d) —sin(@) 0 0
rotate, (6) = 3'”(59) Coso(e) 2 8
0 0 01

59
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